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Class structure

e Comics on Hackaday — Introduction to Quantum
Computing every Wed & Sun

* 30 mins every Sun, one concept (theory,
hardware, programming), Q&A

e Contribute to Q# documentation
http://docs.microsoft.com/quantum

* Coding through Quantum Katas
https://github.com/Microsoft/QuantumKatas/

* Discuss in Hackaday project comments
throughout the week

* Take notes



https://hackaday.io/project/168554-introduction-to-quantum-computing
https://nam06.safelinks.protection.outlook.com/?url=http%3A%2F%2Fdocs.microsoft.com%2Fquantum&data=02%7C01%7CKitty.Yeung%40microsoft.com%7C29071a1b22614fb9a5fc08d756671eb9%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C0%7C637072873203036069&sdata=TcgDFSx31xZyVWqHazZYk%2BmL3eETZyZFtsmEbYZD9q0%3D&reserved=0
https://github.com/Microsoft/QuantumKatas/
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We've seen in page 9 that with two qubits, 13
there are four possible configurationss @) 00
both qubits in |0>s or |1>5, or one in |0> with O
the other in |1>, What if we make the |0>|0>
case in superposition with the |1>|1> case?
Or |0>|1> in superposition with |1>|0>7 O o

@ & Q@ 1f we set the system to be in
this case, we know that if we

oo .. measure the first qubit and
get |0>, the second qubit must
be in |0>4 without needing to
0> + dll 1> measure it,

We can also measure the second qubit to know what the first qubit is
without measuring it.
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The qubits are correlated. This is called “entanglement"u



Entanglement

BY MEASURING ONE OF THE

ENTANGLED GURTITS , T kAow
WHAT THE OTHER
QURATT WoulD BE .

Bell states
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Take |[¢p™) as an example, upon measuring the first qubit, one obtains two possible results:

1. First qubitis 0, get a state |¢') = |00) with probability .
2. First qubitis 1, get a state |¢p"’) = |11) with probability %.

If the second qubit is measured, the result is the same as the above. This means that measuring
one qubit tells us what the other qubit is.



Entanglement

Math insert — entangled states cannot be factored back to individual qubits--------------

Remember in section 1.1, a two-qubit state can be obtained by doing a tensor product
of two individual one-qubit states. However, a Bell state cannot be factored back into
two individual qubits. For example,
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If we want to factor it back to two separate qubits as in (Z)@(;) , then this set of

equations need to be simultaneously satisfied

1 1 o . .
ac =z, ad = 0,bc =0 and bd = 7 Unfortunately, it is impossible. This set of

equations has no solution. It can only be 50% chance of getting |[00) = (é)@((l)) or
1-(Q)e()




https://quantumfactsheet.github.io/

A common mistake
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https://quantumfactsheet.github.io/
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change, (That would imply faster-than-light
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Sooo0o @ . common mistake people make when talking about

entanglement.)
BUT IF I MEASURE ONE,

I'LL KNOW WHAT THE
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MEASURING IT,
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They can remain entangled even if they are separated infinitely
far apart, There is no “spooky” interaction between them,

All it means is that their measurement results are correlated.
And entanglement simply does not depend on distance,



We can use entanglement First prepare a 15

to our advantage, such as Bell state, e.g.
in communication (|01>+|10>)/\/2
or encryption,
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Encryption

KEY: 1,100,100, )., KEY: 10,100,100, In)...

X3

They can’t communicate faster than light, but at least they can
communicate securely.



Teleportation e / \
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Greenberger — Horne — Zeilinger (GHZ) states

Of course, entanglement can happen between any

|000) + [111) number of qubits, The multi-qubit counterpart of
|GHZ>simplest = 2 Bell states are called the
2 Greenberger—Horne-Zeilinger (GHZ) states,
|0)®N 4 |1)®N THREE QUBITSS
|GHZ>general = J2 (Jooo>+|111>)/v2

N QUBITS;
2020 .4.11. (looooooo>+|lllloooo>)/'\/2

=(|]o>®N+]|1>®N) /v2

Imagine N = 500, there are 2°% possible states in the
system - more than the number of atoms in the Universe.



However, entanglement
can be disadvantageous, too,

1f the qubits are not
perfectly isolated,

entanglement with their
environment can easily
happen, causing the qubits

to dGCOhere from
each other,

Measurements also cause
decoherence, when the
measuring device acts as
the environment that
entangles with the qubits,

Therefore, measurements
must be delicately done,
Otherwise, they cause
errors,
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